Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, 557–565 (2019).
Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, 144–144 (2019).
Minato, T. et al. Robotic stepwise synthesis of hetero-multinuclear metal oxo clusters as single-molecule magnets. J. Am. Chem. Soc. 143, 12809–12816 (2021).
Fu, Q. et al. Highly reproducible automated proteomics sample preparation workflow for quantitative mass spectrometry. J. Proteome Res. 17, 420–428 (2018).
Alexoviˇ, M., Sabo, J. & Longuespée, R. Automation of single-cell proteomic sample preparation. Proteomics 21, 1–11 (2021).
Wu, C., Huang, X., Cheng, J., Zhu, D. & Zhang, X. High-quality, high-throughput cryo-electron microscopy data collection via beam tilt and astigmatism-free beam-image shift. J. Struct. Biol. 208, 107396 (2019).
Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).
Caramelli, D. et al. Discovering new chemistry with an autonomous robotic platform driven by a reactivity-seeking neural network. ACS Cent. Sci. 7, 1821–1830 (2021).
Schwaller, P. et al. Mapping the space of chemical reactions using attention-based neural networks. Nat. Mach. Intell. 3, 144–152 (2021).
Schleinitz, J. et al. Machine learning yield prediction from NiCOlit, a small-size literature data set of nickel catalyzed C–O couplings. J. Am. Chem. Soc. 144, 14722–14730 (2022).
Howarth, A., Ermanis, K. & Goodman, J. M. DP4-AI automated NMR data analysis: straight from spectrometer to structure. Chem. Sci. 11, 4351–4359 (2020).
Yang, Z., Chakraborty, M. & White, A. D. Predicting chemical shifts with graph neural networks. Chem. Sci. 12, 10802–10809 (2021).
Atwi, R. et al. An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions. Nat. Comput Sci. 2, 112–122 (2022).
Gessulat, S. et al. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods 16, 509–518 (2019).
Boiko, D. A., Kozlov, K. S., Burykina, J. V., Ilyushenkova, V. V. & Ananikov, V. P. Fully automated unconstrained analysis of high-resolution mass spectrometry data with machine learning. J. Am. Chem. Soc. 144, 14590–14606 (2022).
Phung, W., Bakalarski, C. E., Hinkle, T. B., Sandoval, W. & Marty, M. T. UniDec processing pipeline for rapid analysis of biotherapeutic mass spectrometry data. Anal. Chem. 95, 11491–11498 (2023).
Larson, E. J. et al. MASH Native: a unified solution for native top-down proteomics data processing. Bioinformatics 39, btad359 (2023).
Yunker, L. P. E., Donnecke, S., Ting, M., Yeung, D. & McIndoe, J. S. PythoMS: a python framework to simplify and assist in the processing and interpretation of mass spectrometric data. J. Chem. Inf. Model 59, 1295–1300 (2019).
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Kearnes, S. M. et al. The Open Reaction Database. J. Am. Chem. Soc. 143, 18820–18826 (2021).
Jablonka, K. M., Patiny, L. & Smit, B. Making the collective knowledge of chemistry open and machine actionable. Nat. Chem. 14, 365–376 (2022).
Petras, D. et al. GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser. Nat. Methods 19, 134–136 (2022).
Burykina, J. V., Boiko, D. A., Ilyushenkova, V. V., Eremin, D. B. & Ananikov, V. P. Comprehensive mass spectrometric mapping of chemical compounds for the development of algorithms for machine learning and artificial intelligence. Dokl. Phys. Chem. 492, 51–56 (2020).
Meekel, N., Vughs, D., Béen, F. & Brunner, A. M. Online prioritization of toxic compounds in water samples through intelligent HRMS data acquisition. Anal. Chem. 93, 5071–5080 (2021).
Chen, M. & Dong, G. Copper-catalyzed desaturation of lactones, lactams, and ketones under ph-neutral conditions. J. Am. Chem. Soc. 141, 14889–14897 (2019).
Sahoo, H., Zhang, L., Cheng, J., Nishiura, M. & Hou, Z. Auto-tandem copper-catalyzed carboxylation of undirected alkenyl C–H Bonds with CO 2 by harnessing β-hydride elimination. J. Am. Chem. Soc. 144, 23585–23594 (2022).
Takimoto, M., Liu, M., Nishiura, M. & Hou, Z. Regioselective benzylic C–H Alumination and further functionalization of 2-alkylpyridines by yttrium catalyst. ACS Catal. 12, 13792–13804 (2022).
Zheng, H. et al. Assembly of a wheel-like Eu24Ti8 cluster under the guidance of high-resolution electrospray ionization mass spectrometry. Angew. Chem. Int Ed. 57, 10976–10979 (2018).
Liu, W. et al. Large-scale and high-resolution mass spectrometry-based proteomics profiling defines molecular subtypes of esophageal cancer for therapeutic targeting. Nat. Commun. 12, 1–18 (2021).
Pareek, V., Tian, H., Winograd, N. & Benkovic, S. J. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 368, 283–290 (2020).
Purcell, J. M., Hendrickson, C. L., Rodgers, R. P. & Marshall, A. G. Atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry for complex mixture analysis. Anal. Chem. 78, 5906–5912 (2006).
Joshi, A., Zijlstra, H. S., Collins, S. & McIndoe, J. S. Catalyst deactivation processes during 1-hexene polymerization. ACS Catal. 10, 7195–7206 (2020).
Bütikofer, A. & Chen, P. Cyclopentadienone iron complex-catalyzed hydrogenation of ketones: an operando spectrometric study using pressurized sample infusion-electrospray ionization-mass spectrometry. Organometallics 41, 2349–2364 (2022).
Oeschger, R. J., Bissig, R. & Chen, P. Model compounds for intermediates and transition states in sonogashira and negishi coupling: d 8 – d 10 bonds in large heterobimetallic complexes are weaker than computational chemistry predicts. J. Am. Chem. Soc. 144, 10330–10343 (2022).
Gubler, J., Radić, M., Stöferle, Y. & Chen, P. 2‐aminoalkylgold complexes: the putative intermediate in Au‐catalyzed hydroamination of alkenes does not protodemetalate. Chem. Eur. J. 28, e202200332 (2022).
Zhang, X. et al. Identifying metal-oxo/peroxo intermediates in catalytic water oxidation by in situ electrochemical mass spectrometry. J. Am. Chem. Soc. 144, 17748–17752 (2022).
Zhang, H. et al. Highly enantioselective construction of fully substituted stereocenters enabled by in situ phosphonium-containing organocatalysis. ACS Catal. 10, 5698–5706 (2020).
De Bruycker, K., Welle, A., Hirth, S., Blanksby, S. J. & Barner-Kowollik, C. Mass spectrometry as a tool to advance polymer science. Nat. Rev. Chem. 4, 257–268 (2020).
Baba, K. et al. Fused metalloporphyrin thin film with tunable porosity via chemical vapor deposition. ACS Appl Mater. Interfaces 12, 37732–37740 (2020).
de Jonge, N. F. et al. MS2Query: reliable and scalable MS2 mass spectra-based analogue search. Nat. Commun. 14, 1752 (2023).
Mongia, M. et al. Fast mass spectrometry search and clustering of untargeted metabolomics data. Nat. Biotechnol. 42, 1672–1677 (2024).
Zuffa, S. et al. microbeMASST: a taxonomically informed mass spectrometry search tool for microbial metabolomics data. Nat. Microbiol 9, 336–345 (2024).
Mohimani, H. et al. Dereplication of peptidic natural products through database search of mass spectra. Nat. Chem. Biol. 13, 30–37 (2017).
Kertesz-Farkas, A., Reiz, B., P. Myers, M. & Pongor, S. Database searching in mass spectrometry based proteomics. Curr. Bioinform 7, 221–230 (2012).
Haseeb, M. & Saeed, F. High performance computing framework for tera-scale database search of mass spectrometry data. Nat. Comput Sci. 1, 550–561 (2021).
Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).
Mao, Z., Zhang, R., Xin, L. & Li, M. Mitigating the missing-fragmentation problem in de novo peptide sequencing with a two-stage graph-based deep learning model. Nat. Mach. Intell. 5, 1250–1260 (2023).
Altenburg, T., Giese, S. H., Wang, S., Muth, T. & Renard, B. Y. Ad hoc learning of peptide fragmentation from mass spectra enables an interpretable detection of phosphorylated and cross-linked peptides. Nat. Mach. Intell. 4, 378–388 (2022).
Verheggen, K. et al. Anatomy and evolution of database search engines—a central component of mass spectrometry based proteomic workflows. Mass Spectrom. Rev. 39, 292–306 (2020).
Sun, X. et al. Omicseq: A web-based search engine for exploring omics datasets. Nucleic Acids Res. 45, W445–W452 (2017).
Gauglitz, J. M. et al. Enhancing untargeted metabolomics using metadata-based source annotation. Nat. Biotechnol. 40, 1774–1779 (2022).
Li, D. et al. XY-meta: a high-efficiency search engine for large-scale metabolome annotation with accurate FDR estimation. Anal. Chem. 92, 5701–5707 (2020).
Bach, E., Schymanski, E. L. & Rousu, J. Joint structural annotation of small molecules using liquid chromatography retention order and tandem mass spectrometry data. Nat. Mach. Intell. 4, 1224–1237 (2022).
Goldman, S. et al. Annotating metabolite mass spectra with domain-inspired chemical formula transformers. Nat. Mach. Intell. 5, 965–979 (2023).
Ludwig, M. et al. Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nat. Mach. Intell. 2, 629–641 (2020).
Yang, Q. et al. Ultra-fast and accurate electron ionization mass spectrum matching for compound identification with million-scale in-silico library. Nat. Commun. 14, 3722 (2023).
Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Anal. Chem. 84, 283–289 (2012).
Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).
Valkenborg, D., Mertens, I., Lemière, F., Witters, E. & Burzykowski, T. The isotopic distribution conundrum. Mass Spectrom. Rev. 31, 96–109 (2012).
Wei, Y. et al. Machine-learning-enhanced time-of-flight mass spectrometry analysis. Patterns 2, 100192 (2021).
Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).
King, E., Overstreet, R., Nguyen, J. & Ciesielski, D. Augmentation of MS/MS Libraries with Spectral Interpolation for Improved Identification. J. Chem. Inf. Model 62, 3724–3733 (2022).
Degen, J., Wegscheid‐Gerlach, C., Zaliani, A. & Rarey, M. On the art of compiling and using ‘drug‐like’ chemical fragment spaces. ChemMedChem 3, 1503–1507 (2008).
van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn Res. 9, 2579–2605 (2008).
Huang, W., Bai, J., Guo, Y., Chong, Q. & Meng, F. Cobalt‐catalyzed regiodivergent and enantioselective intermolecular coupling of 1,1‐disubstituted allenes and aldehydes. Angew. Chem. Int Ed. 62, e202219257 (2023).
Li, C. et al. Cobalt‐catalyzed regio‐ and stereoselective hydroboration of allenes. Angew. Chem. 132, 6337–6342 (2020).
Guo, R. et al. Photoinduced copper‐catalyzed asymmetric C(sp3)−H alkynylation of cyclic amines by intramolecular 1,5‐hydrogen atom transfer. Angew. Chem. 134, e202208232 (2022).
Zhang, R. et al. Bio-inspired lanthanum-ortho-quinone catalysis for aerobic alcohol oxidation: semi-quinone anionic radical as redox ligand. Nat. Commun. 13, 428 (2022).
Wang, Y.-F. & Zhang, M.-T. Proton-coupled electron-transfer reduction of dioxygen: the importance of precursor complex formation between electron donor and proton donor. J. Am. Chem. Soc. 144, 12459–12468 (2022).
Lou, S.-J., Zhuo, Q., Nishiura, M., Luo, G. & Hou, Z. Enantioselective C–H alkenylation of ferrocenes with alkynes by half-sandwich scandium catalyst. J. Am. Chem. Soc. 143, 2470–2476 (2021).
Fortman, G. C. & Nolan, S. P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. Chem. Soc. Rev. 40, 5151 (2011).
Khazipov, O. V. et al. Fast and slow release of catalytically active species in metal/NHC systems induced by aliphatic amines. Organometallics 37, 1483–1492 (2018).
Eremin, D. B. et al. Ionic Pd/NHC catalytic system enables recoverable homogeneous catalysis: mechanistic study and application in the Mizoroki–heck reaction. Chem. – A Eur. J. 25, 16564–16572 (2019).
Eremin, D. B. et al. Mechanistic study of Pd/NHC‐catalyzed sonogashira reaction: discovery of NHC‐ethynyl coupling process. Chem. – A Eur. J. 26, 15672–15681 (2020).
Gordeev, E. G., Eremin, D. B., Chernyshev, V. M. & Ananikov, V. P. Influence of R–NHC coupling on the outcome of R–X oxidative addition to Pd/NHC complexes (R = Me, Ph, Vinyl, Ethynyl). Organometallics 37, 787–796 (2018).
Ananikov, V. P., Zalesskiy, S. S., Orlov, N. V. & Beletskaya, I. P. Nickel-catalyzed addition of benzenethiol to alkynes: formation of carbon-sulfur and carbon-carbon bonds. Russian Chem. Bull. 55, 2109–2113 (2006).
Chernyshev, V. M., Denisova, E. A., Eremin, D. B. & Ananikov, V. P. The key role of R–NHC coupling (R = C, H, heteroatom) and M–NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. Chem. Sci. 11, 6957–6977 (2020).
Chernyshev, V. M. et al. Revealing the unusual role of bases in activation/deactivation of catalytic systems: O–NHC coupling in M/NHC catalysis. Chem. Sci. 9, 5564–5577 (2018).
Chagunda, I. C., Fisher, T., Schierling, M. & Mcindoe, J. S. The Poisonous Truth about the Mercury Drop Test: The Effect of Elemental Mercury on Pd(0) and Pd(II)ArX Intermediates. https://doi.org/10.26434/chemrxiv-2023-mfngl.
Frisch, M. J. et al. Gaussian 16 Revision C.01. (2016).
Ernzerhof, M. & Perdew, J. P. Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys. 109, 3313–3320 (1998).
Petersson, G. A. & Al‐Laham, M. A. A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. J. Chem. Phys. 94, 6081–6090 (1991).
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput Chem. 32, 1456–1465 (2011).
Scalmani, G. & Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110 (2010).
Kozlov K. S. et al. Discovering organic reactions with a machine-learning-powered deciphering of tera-scale mass spectrometry data. Figshare, https://doi.org/10.6084/m9.figshare.27949029 (2025).
Kozlov K. S. et al. Discovering organic reactions with a machine-learning-powered deciphering of tera-scale mass spectrometry data. Zenodo, https://doi.org/10.5281/zenodo.14279139 (2025).